В данной информационной статье мы постараемся в полной мере описать принцип работы светодиодов всех разновидностей, имеющихся в природе на сегодняшний день. Рассмотрим общее устройство LED и разберемся как получаются светоизлучающие диоды разных цветов.
- Принцип работы
- Как устроен светодиод
- Получение светодиода определенного цвета
- Покрытие люминофором
- RGB — технология
- Применение различных примесей и различных полупроводников
- Электрические характеристики
- Устройство светодиода индикаторного типа (DIP)
- Как устроен мощный светодиод
- Устройство филаментного светодиода
- Конструкция
- Устройство и принцип работы светодиода COB
- Принцип работы
- Устройство и принцип работы органического светодиода OLED
- Устройство OLED
- Как работает данная технология?
- Достоинства
- Устройство и принцип работы светодиода на основе волокон
- Выводы
Принцип работы
Наверное, каждый человек знает, что принцип действия светодиода заключается в его «свечении» при подключении к источнику питания. Однако за счет чего это достигается? Давайте разберемся более детально в этом вопросе.
Для создания видимого светового потока конструкция светодиода предусматривает наличие двух полупроводников, один из которых в своем составе должен содержать свободные электроны, а другой – «дыры».
Таким образом, между полупроводниками возникает «P-N» переход, в результате которого электроны от донора переходят в другой полупроводник (реципиент) и занимают свободные дыры с выделением фотонов. Эта реакция проходит только при наличии источника постоянного тока.
Принцип действия разобрали, однако благодаря чему происходит этот процесс? Для этого необходимо рассмотреть конструктивную особенность светодиода.
Как устроен светодиод
В независимости от модели светодиода (СОВ, OLED, SMD и т.д.) они состоят из следующих элементов:
- Анод (подача положительной полуволны на кристалл);
- Катод (подача отрицательной полуволны постоянного тока на кристалл полупроводника);
- Отражатель (отражение светового потока на рассеиватель);
- Чип или кристалл полупроводника (излучение светового потока за счет «P-N» перехода);
- Рассеиватель (увеличение угла свечения светодиода).
Теперь ознакомимся со способами получения различных цветов.
Получение светодиода определенного цвета
Ранее мы разобрали принцип работы светодиода и выяснили, что световой поток образуется при возникновении «P-N» перехода в полупроводнике с выделением фотонов видимых человеческому глазу. Однако каким же образом можно получить различное свечение светодиода? Для этого существует несколько вариантов. Рассмотрим каждый из них.
Покрытие люминофором
Данная технология позволяет получить практически любой цвет, однако зачастую используется для получения белых светодиодов. Для нее применяют специальный реагент – люминофор, которым покрывают красный или синий светодиод. После обработки синий светоизлучающий диод начинает светить белым.
RGB — технология
Подобный тип устройств способен излучать любой оттенок светового спектра за счет применения в одном кристалле 3-х светодиодов: красного, зеленого и синего. В зависимости от интенсивности свечения каждого из них, меняется излучаемый свет.
Применение различных примесей и различных полупроводников
Благодаря данной технологии, изменяется длина волны излучаемого светового потока в зоне «P-N» перехода. А как известно, в зависимости от длинны волны, ее цвет меняется. Более наглядно это можно увидеть на следующем фото:
Теперь давайте разберем следующий вопрос: какими электрическими характеристиками обладают данные устройства и что нужно для их надежной работы.
Электрические характеристики
Светодиоды – это устройства, излучающие световой поток при прохождении через них стабилизированного постоянного напряжения низкого номинала (3-5В). За счет создания разности потенциалов на аноде и катоде в кристалле возникает электрический ток, создающий световой поток.
Для полноценной работы LED, величина тока должна быть на уровне 20-25 мА. Однако для мощных светодиодов, ток потребления может достигать 1400 мА.
При увеличении напряжения источника питания, сила тока увеличивается по экспоненте. Это означает что при незначительном скачке напряжения питания сила тока увеличивается многократно, что может привести к повышению температуры и выходу из строя светоизлучающего диода(читайте, как проверить светодиод). Именно по этой причине источник постоянного напряжения необходимо стабилизировать с помощью специальных микросхем.
Теперь рассмотрим основные разновидности LED, их достоинства и недостатки.
Устройство светодиода индикаторного типа (DIP)
Данный тип LED – это «первопроходцы» в сфере светодиодной техники. Они предназначаются для промышленности в качестве индикаторов.
Они состоят из 3-х или 5-и миллиметрового корпуса, анода, катода, кристалла, золотого (в бюджетных вариантах медного) проводника, соединяющего анод с кристаллом и рассеивателя.
На практике применяются очень редко, т.к. имеют ряд недостатков:
- большой размер;
- малый угол свечения (до 1200);
- низкое качество кристалла (при длительной работе яркость излучения падает до 70%);
- слабый световой поток за счет малой пропускной способности кристалла (до 20мА).
Как устроен мощный светодиод
Мощные светоизлучающие диоды (например, фирмы cree) предназначены для создания интенсивного светового потока за счет прохождения через кристалл большого тока (до 1400 мА).
На кристалле выделяется большое количество тепла, которое с помощью алюминиевого радиатора отводится от кристалла полупроводника. Также этот радиатор служит в качестве отражателя для увеличения светового потока.
Для надежной работы мощных LED необходимо наличие в схеме специального драйвера рассчитанного на прохождение большого потока электронов, который помимо стабилизации напряжения должен ограничивать ток, соответствующий номинальной работе устройства.
Устройство филаментного светодиода
Светодиоды типа filament были изобретены еще в начале 2008 года. Однако пик их популярности приходится на 2014-2016 года. Они стали популярными у дизайнеров, поскольку напоминали обычные лампы накаливания и потребляли минимальное количество электроэнергии. Рекомендуем почитать интересную статью про филаментные светодиодные лампы.
Конструкция
Филаментные LED – это устройства, состоящие из сапфирового или обычного стекла диаметр, которого не превышает 1,5мм и специально выращенных кристаллов полупроводников (28 штук) соединённых последовательно на изолированной подложке.
Эти светодиоды помещаются в специальную колбу, покрываемую люминофором, за счет чего можно получить любой цвет. Основное достоинство LED устройств, разработанных по данной технологии – это угол свечения, достигающий 3600.
Филаментные светоизлучающие диоды некоторые источники относят к классу COB (смотрите раздел ниже), поскольку кристаллы выращиваются на стекле или сапфире по аналогичной технологии.
Устройство и принцип работы светодиода COB
Технология СОВ или же Chip-On-Board – это одна из современных разработок в сфере электроники, заключающаяся в помещении большого количества кристаллов полупроводника с помощью диэлектрического клея на алюминиевую подложку. Также изготовление светодиодов подобного типа возможно на стеклянной матрице (COG) однако принцип работы у них одинаков.
Полученная матрица покрывается люминофором. В результате удается достичь равномерного свечение COB светодиода любого оттенка по всей площади. Данные устройства широко применяются в разработке телевизоров, ноутбуков и планшетов.
Принцип работы
Несмотря на то, что СОВ светодиоды имеют специфическое название, принцип его действия полностью аналогичен обычным индикаторным светоизлучающим диодам разработанных в 1962 году. При прохождении тока через кристаллы полупроводника возникает «P-N» переход и как следствие – световой поток.
Отличительной особенностью данного типа устройств является наличие большого количество кристаллов, что позволяет получить более интенсивный световой поток.
Устройство и принцип работы органического светодиода OLED
Самое новое достижение в сфере производства – это технология OLED. Она позволяет производить высокотехнологические телевизоры с тонким дисплеем, миниатюрные смартфоны, планшеты и еще многие другие приборы, без которых не обойтись в современном обществе.
Устройство OLED
Светоизлучающий диод OLED состоит из:
- анода, изготовленного из смеси оксида индия с оловом;
- подложки из фольги, стекла или же пластика;
- алюминиевого или кальциевого катода;
- излучающей прослойки на основе полимера;
- токопроводящего слоя из органических веществ.
Как работает данная технология?
Принцип действия OLED аналогичен светодиодам СОВ, SMD и DIP и заключается в образовании «P-N» перехода в полупроводниках. Однако отличительной особенностью технологии ОЛЕД является применение специальных полимеров, из которых состоит светоизлучающая прослойка, за счет которой увеличивается срок службы светодиода, световой поток видимого спектра и угол свечения.
Достоинства
- минимальные размеры;
- низкое энергопотребление;
- равномерное свечение по всей площади;
- длительный срок эксплуатации;
- увеличенный срок службы;
- широкий угол свечения (до 2700);
- низкая себестоимость.
Мы рассмотрели основные типы светоизлучающих диодов, которые применяются в современном мире, однако на ряду с ними, корейские ученые пошли дальше и разработали LED на основе волокон, которые по их обещаниям вытеснят все устаревшие типы устройств. Давайте рассмотрим, что они собой представляют.
Устройство и принцип работы светодиода на основе волокон
Для производства светодиодов данной ниши применяют нити терефталата полиэтилена обработанные раствором PEDOT:PSS polystyrene sulfonate. После обработки нить будущего светодиода просушивают при температуре 1300С.
После, заготовку обрабатывают по технологии OLED специальным полимером poly-(p-phenylenevinylene) polymer и полученные волокна покрывают тонким слоем суспензии литий-алюминиевого фторида.
Выводы
Мы рассмотрели основные типы светодиодов, которых как Вы можете видеть существует огромное количество. Однако по принципу работы они все одинаковы.
Также можно сказать, что благодаря применению современных материалов и технологий производства можно добиться высоких технических показателей и более надежной и длительной работы светодиодов.
Для наглядности рекомендуем просмотреть видео, в котором Вы подробно ознакомитесь с конструкцией LED:
Электроны не являются основным переносчиком энергии в проводах. Дырок вообще не существует. Согласно «Таблицы заведомо элементарных структур» -ТЗЭС переносчиками тока в проводниках и полупроводниках являются электростатические структуры 3.0.1. формируемые зарядами протонов и электростатические антиструктуры 3.0.2 формируемые зарядами электронов. Полупроводники светодиодов переводят электростатические структуры в водородное состояние, т.е. снабжают их магнитными структурами. В результате формируются из электростатических структур электрического тока элементарные элементарные фотоны 3.1.1 или антифотоны 3.1.2. Цвет излучаемого света определяется числом элементарных фотонов в макро пучках формируемых материалом светодиода. Так что пора признавать ТЗЭС и не позорится с понятием о дырках. В, Кишкинцев — разработчик ТЗЭС.